Chemical Yields of Nuclear Reactions of Bromine as an Indication of Aggregation and Complexing of Bromine in Organic Matrices at $77^{\circ}K^{1}$

R. M. Iyer and J. E. Willard

Contribution from the Department of Chemistry, University of Wisconsin, Madison, Wisconsin. Received April 28, 1966

Abstract: Organic yields from the Br^{80m} isomeric transition indicate that when solutions of bromine in *n*-hexane are frozen to a polycrystalline solid at 77°K the bromine is dispersed as Br₂ at concentrations of 2×10^{-5} mf (mole fraction) and below, but is present as $(Br_2)_n$ clusters of nearly uniform size at all concentrations in the range of 5 \times 10^{-4} to 1×10^{-2} mf. Formation of these clusters appears to be dependent upon a preferred size of Br₂ aggregate in the crystal lattice, rather than an equilibrium of the type $n\mathbf{Br}_2 \rightleftharpoons (\mathbf{Br}_2)_n$ in solution. Alkyl halides, benzene, and ethanol, at concentrations equivalent to the bromine, lessen clustering by complex formation. Similar clustering of bromine occurs in polycrystalline *n*-pentane but not in glassy 3-methylpentane or in polycrystalline benzene. The organic yield from the $Br^{79}(n,\gamma)Br^{80m}$ process in $(Br_2)_n$ clusters in polycrystalline *n*-C₆H₁₄ is lower than that from the $Br^{s_{0m}} \rightarrow Br^{s_{0}}$ isomeric transition process, suggesting that the recoil atom may not escape its parent cage and that radiolytic effects following internal conversion contribute more effectively to the organic yield than does recoil energy. Bromine, but not I_2 , reacts with the stable unsaturated products formed by radiolysis of polycrystalline $n-C_6H_{14}$ by reactor radiations. The extent of this reaction is the same when the bromine is added after melting the irradiated solid as when it is present during irradiation, indicating the absence of reaction with free radicals.

When Br^{80m} undergoes isomeric transition (Br^{80m} $(4.4 \text{ hr}) \rightarrow \text{Br}^{80} (18 \text{ min}))$, the Br⁸⁰ atoms are positively charged as a result of emission of conversion electrons and Auger electrons.² In a variety of gaseous, liquid, and solid organic media they are able to react to form organic bromides.³ About 40% of the transition events lead to organically bound Br⁸⁰ when 10⁻² mf (mole fraction) Br₂(Br^{80m}) is present in liquid hydrocarbons.⁴ By contrast, the organic yield from 10^{-2} mf Br₂(Br^{80m}) in polycrystalline n-C₆H₁₄ at 77°K is only about 4%, but is raised to 19% by the additional presence of 10^{-2} mf *n*-propyl bromide.⁵ In the present work a further study of this low yield, as a function of concentration of bromine and additives, has shown that chemical yields from nuclear transformations can give useful information about the state of aggregation of a solute and its tendency to become chemically complexed.

Experimental Section

Phillips Pure Grade hydrocarbons were further purified by stirring for 48 hr with concentrated sulfuric acid followed by washing, drying, and fractional distillation. The freshly purified hydrocarbons showed negligible reaction with Br2 on several hours standing in the dark. The compounds n-C₃H₇Br, i-C₃H₇Br, n-C₃H₇I, and CCl4 were purified by preparative gas chromatography. Mallinckrodt AR Br2 was used as received.

Br₂ containing Br^{80m} was prepared by neutron irradiation of Br₂ in the University of Wisconsin reactor. It was dissolved in the desired hydrocarbon, with or without additives present. Aliquots of the solution were placed in glass-stoppered tubes or prepared in

degassed form on a vacuum line, and frozen under liquid nitrogen. Following 2 hr of standing in the solid state a known volume of CCl₄ containing inactive Br₂ was added to the reaction tube, followed by sulfite solution. Aliquots of the organic and aqueous layers were counted in annular jackets surrounding a G.M. tube. The organic phase was counted immediately and the aqueous phase after the $Br^{80m} \rightarrow Br^{80}$ equilibrium had been reestablished. Corrections for relative counting efficiencies of the annular jackets, decay, and contribution of Br⁸² to counting rates were applied. Operations prior to extraction were done in the dark to avoid photochemical bromination.

For n,γ activation, samples sealed under vacuum in quartz ampoules were irradiated in the rabbit facility of the reactor at a flux of 1×10^{12} neutrons cm⁻² sec⁻¹. To maintain them at low temperature during the short irradiations they were irradiated in polyethylene bottles filled with mineral oil frozen in liquid nitrogen. The temperature rose to 85°K at 1 min after removal from the liquid nitrogen, 95°K at 2 min, and 113°K at 3 min. All irradiations were for 2 min or less.

Results

Isomeric Transition. The experimental results from isomeric transition studies, summarized in Table I, confirm the earlier findings⁵ that the organic yield from 10^{-2} mf Br₂(Br^{80m}) in hexane at 77 °K is about 4% and that this is raised to 19% when 10^{-2} mf *n*-C₃H₇Br is also present. They show that the yield in the absence of additives remains at about 4% when the Br₂ concentration is reduced from 1×10^{-2} to 5×10^{-3} , $1\,\times\,10^{-3},$ and 5 $\times\,10^{-4}$ mf, but increases to 8% at 1×10^{-4} mf and to 55 % at 2×10^{-5} mf and below.

Over the 20-fold range of Br₂ concentration where the yield is 4% in the absence of additives, it is raised to about 19% when *n*-C₃H₇Br is present at a concentration equal to that of the Br_2 . When the concentration of $n-C_3H_7Br$ is tenfold less than that of Br_2 , there is little or no enhancement of yield. At a constant n- $C_{3}H_{7}Br$ concentration of 1 \times 10⁻² mf with decreasing Br₂ concentrations, giving $n-C_3H_7Br/Br_2(Br^{80m})$ ratios of 2, 4, 6, 8, 10, the organic yield increases progressively to 24, 30, 33, and 38%. The data of Table II indicate that *i*-C₃H₇Br is more effective, *n*-C₃H₇Cl less effective, and C_2H_3OH much less effective than *n*-

⁽¹⁾ This work was supported in part by the U.S. Atomic Energy Commission (Contract AT(11-1)-32) and by the W. F. Vilas Trust of the University of Wisconsin.

⁽²⁾ S. Wexler, *Phys. Rev.*, **93**, 182 (1954); *J. Chem. Phys.*, **36**, 1929 (1962); "Actions Chimiques et Biologiques des Radiations," Vol. II, M. Haissinsky, Ed., Masson et Cie, Paris, 1965, pp 157-179.

^{(3) (}a) R. M. Iyer and J. E. Willard, J. Am. Chem. Soc., 87, 2494
(1965); (b) J. C. W. Chien and J. E. Willard, *ibid.*, 79, 4872 (1957);
(c) A. A. Gordus and J. E. Willard, *ibid.*, 79, 4609 (1957); (d) J. B. Evans and J. E. Willard, *ibid.*, 78, 2808 (1956); (e) S. Goldhaber, R. S. H. Chiang, and J. E. Willard, *ibid.*, 73, 2271 (1951).
(4) S. Aditya and J. E. Willard, *ibid.*, 79, 3367 (1957).
(5) R. M. A. Habra and L. E. Willard, *ibid.*, 79, 3367 (1957).

⁽⁵⁾ R. M. A. Hahne and J. E. Willard, J. Phys. Chem., 68, 2582 (1964).

Table I. Effect of Br_2 Concentration and Added *n*-C₈H₇Br on the Organic Yields of the $Br^{80m} \rightarrow Br^{80}$ Isomeric Transition Process in Polycrystalline *n*-C₈H₁₄ Matrices at 77°K

Br ₂ or	ily	$Br_2 + n-C_3H_7Br$		
Br ₂ , mf	ОҮ, %	Br2, mf	n-C₃H7Br, mf	ОҮ, %ª
4×10^{-7}	55.6	5×10^{-3}	5×10^{-4}	5.3
4×10^{-6}	53.9	1×10^{-3}	1×10^{-3}	19.1
2×10^{-5}	55.2	5×10^{-3}	5×10^{-3}	20.2
5×10^{-5}	17.0	1×10^{-2}	1×10^{-2}	19.0
6×10^{-5}	12.2	5×10^{-3}	1×10^{-2}	24.3
1×10^{-4}	8.1	2.5×10^{-3}	1×10^{-2}	29.7
5×10^{-4}	4.3	$1.7 imes 10^{-3}$	1×10^{-2}	33.2
1×10^{-3}	4.2	1×10^{-3}	1×10^{-2}	38.0
5×10^{-3}	4.7			
1×10^{-2}	4.9		•••	

^a Average of several determinations; error $\leq 1\%$. OY, organic yield.

Table II. Effect of Solvent and Nature of Additive on the Organic Yields from the Br^{som} \rightarrow Br^{so} Isomeric Transition Process in Organic Matrices at 77°K^a

Solvent	Additive, 5×10^{-3} mf	OY without additive, %'	OY with additive, %'
n-Pentane ^b	n-C ₃ H ₇ Br	4,2°	20.1
Benzene [*]	<i>n</i> −C ₃ H ₇ Br	25.2	27.1
3-Methylpentane ^c (3MP)	<i>n</i> -C₃H ₇ Br	40.0	41.5
n-Hexane ^b	CCl_4	4.7	4,5
	3MP	4.7	4.4
	C ₂ H ₅ OH	4.7	7.6
	n-C ₃ H ₇ Cl	4.7	13.2
	n-C ₃ H ₇ Br	4.7	20.2
	$n-C_{3}H_{7}I$	4.7	22.1ª
	<i>i</i> -C ₃ H ₇ Br	4.7	26.0
	C ₆ H ₆	4.7	21.0

^{*a*} Br₂(Br^{80m}) = 5×10^{-3} mf in all cases. ^{*b*} Polycrystalline. ^{*c*} Glassy. ^{*d*} Negligible Br^{80m} (4.4 hr) activity in the organic layer indicated that the reaction Br₂ + C₃H₇I \rightarrow BrI + C₃H₇Br was unimportant under the conditions used. ^{*e*} A yield of 3.8% at 10^{-2} mf Br₂ was also observed. ^{*f*} Average of several determinations; error $\leq 1\%$. OY, organic yield.

 $C_{3}H_{7}Br$ in increasing the organic yield, while CCl_{4} and 3-methylpentane (3-MP) have no effect.

When polycrystalline n-C₅H₁₂ is used in place of n-C₆H₁₄ as the matrix for the isomeric transition of 5 \times 10⁻³ mf Br₂(Br^{80m}) at 77°K, the organic yield is unchanged at 4%, but when the matrix is polycrystalline benzene or glassy 3-MP, the yields are much higher (Table II) and are essentially unaffected by the presence of a concentration of n-C₃H₇Br equal to that of the Br₂. In n-C₆H₁₄ as solvent addition of a concentration of benzene equal to that of the Br₂ raises the organic yield from 4 to 21%.

Radiative Neutron Capture. Determination of the organic yields of the $Br^{79}(n,\gamma)Br^{80}$ process in hydrocarbons is complicated by reaction of bromine with products (probably olefins) of radiolysis by the reactor radiations. When Br_2 in polycrystalline n-C₆H₁₄ at 77 °K is irradiated, such reaction occurs with the stable products of the radiolysis and not with the free radicals. This was shown by experiments using Co⁶⁰ γ radiation and $Br_2(Br^{82})$. When Br_2 was present at 10⁻³ mf in polycrystalline n-C₆H₁₄ during irradiation, the amount of bromine which entered organic combination per gram of hexane per second of irradiation was the same as when the Br₂ was added to the irradiated hexane after melting (following the irradiation). The presence of 10^{-3} mf I₂ during irradiation and melting did not reduce the amount of bromine which became organically bound when Br₂ was added after melting. The *G* value for Br₂ entering organic combination was 2.5. Using this value, and observed values for the organic retention of bromine when Br₂(Br⁸²) was added to *n*-C₆H₁₄ which had been exposed in the rabbit facility, the dose rate to samples in the reactor was estimated to be 8×10^{18} ev g⁻¹ min⁻¹.

The corrected organic yields, given in the fourth column of Table III, are equal to the observed organic incorporation of Br^{80m} , reduced by the per cent of activity that would have entered as a result of reaction with the radiolysis products. Table III shows that the fraction of the Br_2 which reacts with radiolysis products is negligible for a concentration of 1×10^{-2} mf and an irradiation time of 5 sec, but increases with increasing irradiation time and decreasing concentration, as expected.

Table III.	Organic Yields of the $Br^{79}(n,\gamma)Br^{80m}$ and the second seco	the
Br ⁷ ⁹ (n,γ)Bι	$^{0m} \rightarrow Br^{s0}$ Reactions in Polycrystalline	
$n-C_6H_{14}$ M	trices at 77°K	

	Br ⁸⁰				
Reactor		OY	OY	IT	
irradn,	Br ₂ ,	obsd,	cor,	OY,	
sec	mf	%	$\%^a$	%	
5	1×10^{-2}	0.8	0.8		
5	5×10^{-3}	0.9	0.9		
5	1×10^{-3}	1.1	0.95	5.2	
5	1×10^{-4}	9.5	7.0	16.1	
20	1×10^{-3}	1.8	0.9		
20	1×10^{-4}	17.0	7.0	16.6	
30	1×10^{-3}	2.4	0.9	5.9	
60	1×10^{-3}	4.4	1.2	6.3	
60	1×10^{-4}	38.0	7.8		
120	1×10^{-4}	71.0	10.0		
120	1×10^{-5}	84.0			
120	$5 \times 10^{-3} \mathrm{Br}_2$	22.6	21.2		
	$+ 5 \times 10^{-3}$ C ₆ H ₆	04 0			
120	5×10^{-36} <i>n</i> -C ₃ H ₇ Br	81.0			

^a Corrected for reaction with radiolytic products, see text. ^b No Br₂ present. ^c OY, organic yield; IT, isomeric transition.

The fifth column of Table III shows the results of experiments in which the matrices containing Br_2 in $n-C_6H_{14}$ were allowed to stand at 77°K for 2 hr after neutron irradiation to determine the isomeric transition organic yield from Br^{80m} produced *in situ* by the (n,γ) reaction. The organic yield of the $Br^{80m} \rightarrow Br^{80}$ process was then determined from the ratio of the Br^{80} (18 min) activity found in the organic fraction at the time of extraction to the total Br^{80m} (4.4 hr) activity from the sample corrected to the same time.

Discussion

Clustering of Br_2 in Crystalline Hexane. If bromine in n-C₆H₁₄ at 77°K forms solid solutions with monomolecular dispersion, the organic yield from the isomeric transition might be expected to be independent of concentration over the range for which this condition holds. Such appears to be the case at concentration of 2 \times 10^{-5} mf and below (Table I).⁶ In the range of 5 \times 10^{-5} to 1×10^{-4} mf, the yield decreases progressively as might be expected if the solubility of the Br₂ was exceeded and separation from the hexane occurred by fractional crystallization. However, the constancy of the organic yield at 4% over the twentyfold concentration range from 5×10^{-4} to 1×10^{-2} seems to indicate that the Br_2 is all present as dissolved $(Br_2)_n$ clusters with a nearly constant value of n. Separation of the Br₂ from the matrix by fractional crystallization or increase in the value of *n* would result in a decrease in organic yield with increasing total concentration of Br₂ because the Br^{80m} atoms undergoing isomeric transition would be more and more protected⁷ from reaction with the organic medium by other Br₂ molecules. At 10⁻¹ mf Br₂ the reported⁸ organic yield of Br⁸² from the Br^{82m} isomeric transition is less than 1%rather than 4%, indicating that at this concentration the clusters are larger or fractional crystallization has occurred.

If it is assumed that the $(Br_2)_n$ clusters in the concentration range of constant *n* represent an equilibrium of the type $nBr_2 \rightleftharpoons (Br_2)_n$, where $K = [(Br_2)_n]/[Br_2]^n$, n may be evaluated by comparing the experimental dependence of organic yield on concentration with that which would be expected for various values of ncoupled with various values of K. For this estimate it is assumed that the yield when all the bromine is monomolecularly dispersed is 55%, that the yield when it is all in $(Br_2)_n$ units is 5%, and that the equilibrium distribution in the liquid hexane at the freezing point is frozen into the solid. Using these assumptions, plots were made of organic yield as a function of bromine concentration for various assumed values of n and K and these were compared with the plot determined from the experimental data. The values n = 5 and $K = 10^{17}$ show the closest agreement with the experimental curve throughout its range.

Intermolecular bonding between halogen molecules in the solid state has been suggested as probable on the basis of nuclear quadrupole moment evidence,⁹ and the molecules I_4 and Br_4 have been postulated to account for features of the absorption spectra of iodine¹⁰ and bromine¹¹ vapor. It would, however, be surprising if most of the bromine in $n-C_6H_{14}$ at its freezing point is present as $(Br_2)_{\overline{2}}$, as indicated by the above estimate. Experimental evidence against the equilibrium $n(Br_2) \rightleftharpoons$ $(Br_2)_n$ accounting for the lowering of the organic yield is furnished by the fact that the yield in glassy 3MP at 77 °K is high (40 %) even though this solvent does not become rigid on cooling until about 120°K (i.e., much below the 178°K freezing point of n-hexane). If such an equilibrium prevailed, it would be expected to favor more and possibly larger clusters at the lower temperature, giving a yield of $\leq 4\%$ in 3MP glass. Polycrystalline *n*-pentane, like polycrystalline *n*-hexane, gives an organic yield of 4% in the range of 10^{-2} mf Br₂ and immediately below.

These results seem to indicate that the uniform clustering of Br₂, required to account for the range of constancy of the yield at 4%, must result from a peculiarity of the hydrocarbon lattice which gives preference to incorporation of a rather specific number of Br₂ molecules at each solute site.

Prevention of Clustering by Complexing Agents. The effect of n-C₃H₇Br in raising the organic yield of the isomeric transition (Table I) must result from reducing cluster formation by complexing the Br_2 rather than from an effect on the nature of the lattice sites in the crystals. This conclusion is necessary because the effect on the yield is dependent on the ratio of the concentration of $n-C_3H_7Br$ to Br_2 rather than on the absolute concentration of $n-C_3H_7Br$. Evidence for complex formation is also given by the fact that the color of polycrystalline $n-C_6H_{14}$ containing equal amounts of Br₂ and n-C₃H₇Br is different (lemon-yellow) from that containing only Br₂ (orange-red). The complex is presumably similar to the charge-transfer complexes of iodine. Consistent with this analogy is the fact (Table II) that propyl chloride, propyl iodide, ethanol, and benzene also form complexes with Br2, as indicated by their effect on the organic yield, while carbon tetrachloride and 3-methylpentane do not.¹² The fact that Br₂(Br^{80m}) in polycrystalline benzene gives a much higher organic yield than in polycrystalline *n*-hexane is further consistent with $known^{13}$ complexing action by the benzene.

Earlier tests⁵ have shown that the presence of 10^{-2} mf n-C₃H₇Br in polycrystalline n-C₆H₁₄ containing 10^{-2} mf Br₂(Br^{80m}) at 77°K raises the yield of n-C₃H₇Br only from 0.12 to 1.2% and of *i*-C₃H₇Br from 0.03 to 0.32%, while raising the total organic yield from 4 to 19%. A similar analysis of a system containing a tenfold excess of $n-C_3H_7Br$ (10⁻² mf) over $Br_2(Br^{80m})$ (10⁻³ mf) has now shown that the $n-C_3H_7Br^{s_0}$ yield is still only 3% while the total organic yield is 38%. Since 40-50% of the organic yield of bromine undergoing nuclear transformations in pure $n-C_3H_7Br$ appears as $n-C_3H_7Br$,^{3b} the present results show that the Br⁸⁰ from complexed Br reacts primarily with molecules of the hydrocarbon matrix rather than with the complexing molecules.

Radiative Neutron-Capture Experiments. If Br^{80m} atoms recoiling from the $Br^{79}(n,\gamma)Br^{80m}$ process move several molecular diameters from their parent site one might expect that the organic yield from this process would be higher than that of the isomeric transition process in the concentration range where the latter remains at 4%, since the recoil might allow the tagged atom to escape from the $(Br_2)_n$ aggregate into the surrounding organic medium. The observed yields (for short irradiations where γ effects are negligible) are, however, only 1% (Table III). This seems to (12) Spectrophotometric evidence for charge-transfer complexes between alkyl halides and halogens is given by R. M. Keefer and L. J. Andrews, J. Am. Chem. Soc., 74, 1891 (1952). (13) O. Hassel and K. O. Stromme, Acta Chem. Scand., 12, 1146

(1958).

⁽⁶⁾ Two types of evidence indicate that the monomolecular dispersion of Br₂ at 2×10^{-5} mf, and below is due to the solubility of Br₂ rather than to complexing by impurities. Activation analysis for halogens in the pure n-C6H14 solvent showed the absence of alkyl halides, and the organic yield of the isomeric transition in polycrystalline $n-C_6H_{14}$ containing 2×10^{-6} mf Br₂(Br^{80m}) was the same for samples of $n-C_6H_{14}$ which had been passed through columns of activated Al_2O_3 as for those which had not.

⁽⁷⁾ This protection may be substantial, even for small clusters where the Br⁸⁰ is born on the surface, because exchange with Br₂ and scavenging of radicals by Br₂ as well as physical shielding are of importance.
(8) (a) J. A. Merrigan and E. P. Rack, J. Phys. Chem., 69, 2806 (1965);

⁽b) J. A. Merrigan, W. K. Ellgren Jr., and E. P. Rack, J. Chem. Phys., 44, 174 (1966).

⁽a) C. H. Townes and B. P. Dailey, *ibid.*, 20, 35 (1952).
(b) C. H. Townes and G. Friedheim, Z. Naturforsch., 2a, 20 (1947);
(c) R. M. Keefer and T. L. Allen, J. Chem. Phys., 25, 1059 (1956).
(c) B. A. Ogryzlo and B. C. Sanctuary, J. Phys. Chem., 69, 4422 (1965).

4564

indicate that the recoil does not free the Br^{80m} from the parent $(Br_2)_n$ unit, or that, if it does, the atom's capability of reacting with the organic medium is removed during the escape process. To test the latter possibility, samples were allowed to stand at 77 °K for 2 hr following neutron irradiation. They were then extracted and the organic layer was analyzed for Br⁸⁰ (18 min) which might have been produced by the isomeric transition of Br^{80m} atoms which had recoiled into the organic medium as a result of the n,γ process. The yields were very nearly those predicted on the assumption that the organic yield of the n, γ process is a true indication of the fraction of the Brsom atoms which escape from the $(Br_2)_n$ units.¹⁴

The fact that the organic yield from the n,γ process in polycrystalline n-C₆H₁₄ is lower (1%) than that of the isomeric transition process (4%) is unexpected. The most obvious interpretation would seem to be that the recoil atom, faced by a solid wall of close-packed surrounding molecules, has a very low probability of escape from the parent cage, and that it has less capability of reacting with the hydrocarbon matrix surrounding the surface of the cluster than does an atom produced by the isomeric transition. This difference in capability may result from the fact that essentially all of the isomeric transition events produce Br^{so} ions which emit conversion and Auger electrons which produce radiolytic fragments from the hydrocarbon matrix, whereas the fraction of $Br^{79}(n,\gamma)Br^{80m}$ events which lead to charged Br^{80m} and electron emission may be no more than 12 %.15

(15) S. Wexler and T. H. Davies, J. Chem. Phys., 20, 1688 (1952).

Kinetics of Thermal Deuterium Atom Reactions with Methane and Ethane¹

Robert H. Lawrence, Jr., and Richard F. Firestone²

Contribution from the Department of Chemistry, The Ohio State University, Columbus, Ohio 43210. Received May 21, 1966

Abstract: Use of NH_3 as a proton (deuteron) scavenger has permitted a study of the effects of temperature on homogeneous thermal D-atom reactions with CH₄ and C_2H_6 in H³ β -ray irradiated gaseous TD-D₂-CH₄-NH₃ and $TD-D_2-C_2H_6-NH_3$ mixtures between 25 and 220°. Exchange products with CH₄ are CH₃D, CH₂D₂, CHD₃, and CD_4 , but ethane is not a detectable product below 125°. C_2H_5D is the only deuterated ethane formed by the atomic sequence in $D_2-C_2H_6-NH_3$ mixtures at 25 to 125°. Exchange proceeds via H-atom abstraction in both systems. Above ~125° a chain reaction sequence, $D + RH \rightarrow HD + R \cdot (i)$, $R \cdot + D_2 \rightarrow RD + D \cdot (ii)$, becomes dominant. Activation energies, E_i and E_{ii} , have been found to be 8.5 \pm 0.5 and 12.0 \pm 0.7 kcal/mole, respectively, for $RH = CH_4$, and 6.5 \pm 0.5 and 13.5 \pm 1.0 kcal/mole, respectively, for $RH = C_2H_6$. Estimates of ΔS° and ΔH° for *i* provide $k_{(D,+CH_4)} = 6 \times 10^{-11} e^{-8500/RT}$ cc/molecule sec between 25 and 125° and a collision theory (hard sphere, $\sigma = 3$ A, two squared terms) steric factor of 0.1. Results also suggest that D₂ is quite inefficient as a third body for collisional stabilization of excited methane and ethane molecules formed via $R \cdot + D \cdot \rightarrow RD^*$, even at D_2 pressures near 1 atm.

Ithough the reactions of thermal hydrogen atoms Although the reactions of thousand L_2 with CH_4 and with C_2H_6 have been subjects of many investigations for over 30 years,³⁻⁹ the activation energy for the homogeneous reaction with CH4 has yet to be established within reasonable limits.¹⁰ Before

- (1) Based on a dissertation presented in partial fulfillment of require ments for the Ph.D., The Ohio State University, 1965, by R. H. Law-rence, Jr., U.S.A.F., A.F.I.T. Program, 1961-1965.
- (2) To whom communications concerning this article should be addressed.

1958 values ranging from 4.5⁴ to 15 kcal/mole³ were reported. Recently, the range appears to have been narrowed to approximately 7 to 12 kcal/mole.5,6,8 Little attention has been given to reactions of hydrogen atoms with C2H6 during the last decade. Earlier values of E_A for ethane range from 6 to 9 kcal/mole.³ This state of affairs attests to difficulties with production of hydrogen atoms at steady rates, avoidance of surface effects, and establishment of necessary relations between measured quantities and parameters of the elementary steps. Shortcomings of flow systems^{4,8} for studies of homogeneous reactions and for temperature coefficient measurements are well known. Flame techniques,6 in particular, as well as photolytic competitive methods,⁵ are dependent upon knowledge concerning elementary steps whose kinetic parameters are seldom more firmly established than those to be determined. Investigations employing radiolytically generated hydrogen atoms^{7,9} are subject to seriously misleading interpreta-

⁽¹⁴⁾ In making this estimate it was assumed that the fraction of the Br^{som} atoms escaping the clumps was twice the organic yield since approximately half would enter inorganic combination. It was further assumed that the organic yield for the isomeric transition of those which had escaped would be ca. 50%, which is the value for the organic yield of the isomeric transition in very dilute Br₂ in *n*-hexane.

⁽³⁾ E. W. R. Steacie, "Atomic and Free-Radical Reactions," 2nd ed,

<sup>Reinhold Publishing Corp., New York, N. Y., 1954.
(4) M. R. Berlie and D. J. Leroy,</sup> *Can. J. Chem.*, 32, 650 (1954).
(5) R. Klein, J. R. McNesby, M. D. Scheer, and L. J. Schoen, *J.*

Chem. Phys., 30, 58 (1958). (6) C. P. Fenimore and C. W. Jones, J. Phys. Chem., 65, 2200 (1961).
 (7) R. F. Firestone, C. F. Lemr, and G. J. Trudel, J. Am. Chem. Soc.,

<sup>84, 2279 (1962).
(8)</sup> J. W. S. Jamieson and G. R. Brown, Can. J. Chem., 42, 1638 (1964).

⁽⁹⁾ A. Maschke and F. W. Lampe, J. Am. Chem. Soc., 86, 569 (1964). (10) S. W. Benson and W. B. DeMore, Ann. Rev. Phys. Chem., 16, 404 (1965).